SUGGESTED SOLUTION TO HOMEWORK 7

JUNHAO ZHANG

Problem 1. (a) Prove that for every two subspaces X_1 and X_2 of a Hilbert space,

$$(X_1 + X_2)^{\perp} = X_1^{\perp} \cap X_2^{\perp}.$$

(b) Prove that for every two closed subspaces X_1 and X_2 of a Hilbert space,

$$(X_1 \cap X_2)^{\perp} = \overline{X_1^{\perp} + X_2^{\perp}}.$$

Proof. (a) On the one hand, for arbitrary $x \in (X_1 + X_2)^{\perp}$, since $X_1 \subset X_1 + X_2$,

Proof. (a) On the one hand, for arbitrary $x \in (X_1 + X_2)^{\perp}$, since $X_1 \subset X_1 + X_2$, then for arbitrary $y \in X_1$, we have $x \perp y$ which implies $x \in X_1^{\perp}$. Therefore $(X_1 + X_2)^{\perp} \subset X_1^{\perp}$. Similarly, $(X_1 + X_2)^{\perp} \subset X_2^{\perp}$. Hence $(X_1 + X_2)^{\perp} \subset X_1^{\perp} \cap X_2^{\perp}$. On the other hand, for arbitrary $y \in X_1 + X_2$, there exist $y_1 \in X_1$ and $y_2 \in X_2$ such that $y = y_1 + y_2$, then for arbitrary $x \in X_1^{\perp} \cap X_2^{\perp}$, we have $x \perp y_1$ and $x \perp y_2$, which implies $x \perp y$. Therefore we also have $X_1^{\perp} \cap X_2^{\perp} \subset (X_1 + X_2)^{\perp}$. Combining the above results, we have $(X_1 + X_2)^{\perp} = X_1^{\perp} \cap X_2^{\perp}$. (b) Since X_1, X_2 are closed, we have $(X_i^{\perp})^{\perp} = X_i$ for i = 1, 2. Then from (a), we have $(X_1^{\perp} + X_2^{\perp})^{\perp} = (X_1^{\perp})^{\perp} \cap (X_2^{\perp})^{\perp} = X_1 \cap X_2$. Therefore $\overline{X_1^{\perp} + X_2^{\perp}} = ((X_1^{\perp} + X_2^{\perp})^{\perp})^{\perp} = (X_1 \cap X_2)^{\perp}$. □

Problem 2. Let P be the vector space of all real polynomials on [-1, 1]. Show that

$$\langle x,y \rangle = \int_{-1}^{1} x(t)y(t)dt$$

defines an inner product on P. Use the Gram-Schmidt process to orthonormalize the set $\{1, t, t^2\}$.

Proof. It is clear that $\langle \cdot, \cdot \rangle$ defines an inner product on P. By the Gram-Schmidt process, we find a set of orthonormal vectors,

$$e_1(t) := \frac{\sqrt{2}}{2}, \quad e_2(t) := \frac{\sqrt{6}}{2}t, \quad e_3(t) := \frac{3\sqrt{10}}{4}\left(t^2 - \frac{1}{3}\right).$$

Problem 3. Let $T: \ell_2 \to \ell_2$ be defined by

$$T: (x_1, \cdots, x_n, \cdots) \mapsto (x_1, \cdots, \frac{1}{n}x_n, \cdots).$$

Show that $\mathcal{R}(T)$ is not closed in ℓ_2 .

Proof. Suppose on the contrary that $\mathcal{R}(T)$ is closed in ℓ_2 , since ℓ_2 is a Banach space, we have $\mathcal{R}(T)$ is also a Banach space. Moreover, it is clear that T is bounded and bijective, therefore by the open mapping theorem, we also have T^{-1} is bounded. However, consider $\{e_n\}_{n\geq 1}$ defined by

$$e_n(i) = \begin{cases} 1, & i = n, \\ 0, & i \neq n. \end{cases}$$

Then $||e_n||_2 = 1$ and $e_n \in \mathcal{R}(T)$. Since

$$||T^{-1}|| \ge ||T(e_n)|| = n,$$

therefore by letting n goes to infinity, we have T^{-1} is not bounded which is a contradiction, hence $\mathcal{R}(T)$ is not closed.

Email address: jhzhang@math.cuhk.edu.hk