SUGGESTED SOLUTION TO HOMEWORK 7

JUNHAO ZHANG

Problem 1. (a) Prove that for every two subspaces X_{1} and X_{2} of a Hilbert space,

$$
\left(X_{1}+X_{2}\right)^{\perp}=X_{1}^{\perp} \cap X_{2}^{\perp} .
$$

(b) Prove that for every two closed subspaces X_{1} and X_{2} of a Hilbert space,

$$
\left(X_{1} \cap X_{2}\right)^{\perp}=\overline{X_{1}^{\perp}+X_{2}^{\perp}} .
$$

Proof. (a) On the one hand, for arbitrary $x \in\left(X_{1}+X_{2}\right)^{\perp}$, since $X_{1} \subset X_{1}+X_{2}$, then for arbitrary $y \in X_{1}$, we have $x \perp y$ which implies $x \in X_{1}^{\perp}$. Therefore $\left(X_{1}+X_{2}\right)^{\perp} \subset X_{1}^{\perp}$. Similarly, $\left(X_{1}+X_{2}\right)^{\perp} \subset X_{2}^{\perp}$. Hence $\left(X_{1}+X_{2}\right)^{\perp} \subset X_{1}^{\perp} \cap X_{2}^{\perp}$.

On the other hand, for arbitrary $y \in X_{1}+X_{2}$, there exist $y_{1} \in X_{1}$ and $y_{2} \in X_{2}$ such that $y=y_{1}+y_{2}$, then for arbitrary $x \in X_{1}^{\perp} \cap X_{2}^{\perp}$, we have $x \perp y_{1}$ and $x \perp y_{2}$, which implies $x \perp y$. Therefore we also have $X_{1}^{\perp} \cap X_{2}^{\perp} \subset\left(X_{1}+X_{2}\right)^{\perp}$.

Combining the above results, we have $\left(X_{1}+X_{2}\right)^{\perp}=X_{1}^{\perp} \cap X_{2}^{\perp}$.
(b) Since X_{1}, X_{2} are closed, we have $\left(X_{i}^{\perp}\right)^{\perp}=X_{i}$ for $i=1,2$. Then from (a), we have $\left(X_{1}^{\perp}+X_{2}^{\perp}\right)^{\perp}=\left(X_{1}^{\perp}\right)^{\perp} \cap\left(X_{2}^{\perp}\right)^{\perp}=X_{1} \cap X_{2}$. Therefore $\overline{X_{1}^{\perp}+X_{2}^{\perp}}=$ $\left(\left(X_{1}^{\perp}+X_{2}^{\perp}\right)^{\perp}\right)^{\perp}=\left(X_{1} \cap X_{2}\right)^{\perp}$.

Problem 2. Let P be the vector space of all real polynomials on $[-1,1]$. Show that

$$
\langle x, y\rangle=\int_{-1}^{1} x(t) y(t) d t
$$

defines an inner product on P. Use the Gram-Schmidt process to orthonormalize the set $\left\{1, t, t^{2}\right\}$.

Proof. It is clear that $\langle\cdot, \cdot\rangle$ defines an inner product on P. By the Gram-Schmidt process, we find a set of orthonormal vectors,

$$
e_{1}(t):=\frac{\sqrt{2}}{2}, \quad e_{2}(t):=\frac{\sqrt{6}}{2} t, \quad e_{3}(t):=\frac{3 \sqrt{10}}{4}\left(t^{2}-\frac{1}{3}\right) .
$$

Problem 3. Let $T: \ell_{2} \rightarrow \ell_{2}$ be defined by

$$
T:\left(x_{1}, \cdots, x_{n}, \cdots\right) \mapsto\left(x_{1}, \cdots, \frac{1}{n} x_{n}, \cdots\right)
$$

Show that $\mathcal{R}(T)$ is not closed in ℓ_{2}.
Proof. Suppose on the contrary that $\mathcal{R}(T)$ is closed in ℓ_{2}, since ℓ_{2} is a Banach space, we have $\mathcal{R}(T)$ is also a Banach space. Moreover, it is clear that T is bounded and
bijective, therefore by the open mapping theorem, we also have T^{-1} is bounded. However, consider $\left\{e_{n}\right\}_{n \geq 1}$ defined by

$$
e_{n}(i)= \begin{cases}1, & i=n \\ 0, & i \neq n\end{cases}
$$

Then $\left\|e_{n}\right\|_{2}=1$ and $e_{n} \in \mathcal{R}(T)$. Since

$$
\left\|T^{-1}\right\| \geq\left\|T\left(e_{n}\right)\right\|=n
$$

therefore by letting n goes to infinity, we have T^{-1} is not bounded which is a contradiction, hence $\mathcal{R}(T)$ is not closed.

Email address: jhzhang@math.cuhk.edu.hk

